skip to main content


Search for: All records

Creators/Authors contains: "Harrison, R. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract We show that highly confined superfluid films are extremely nonlinear mechanical resonators, offering the prospect to realize a mechanical qubit. Specifically, we consider third-sound surface waves, with nonlinearities introduced by the van der Waals interaction with the substrate. Confining these waves to a disk, we derive analytic expressions for the cubic and quartic nonlinearities and determine the resonance frequency shifts they introduce. We predict single-phonon shifts that are three orders of magnitude larger than in current state-of-the-art nonlinear resonators. Combined with the exquisitely low intrinsic dissipation of superfluid helium and the strongly suppressed acoustic radiation loss in phononic crystal cavities, we predict that this could allow blockade interactions between phonons as well as two-level-system-like behavior. Our work provides a pathway towards extreme mechanical nonlinearities, and towards quantum devices that use mechanical resonators as qubits. 
    more » « less
  2. Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2(PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense.

     
    more » « less